訪問したらクリックしてね!

【 更新・新着記事 】

no image

2026/1/29

C/2026 A1 (MAPS) 太陽最接近4/4 地球最接近4/5

地球最接近4/5

2026/1/29

C/2025 R3 (PANSTARRS) 彗星 2026年4月26日 地球最接近-1.0等級

目次1 太陽接近までは、明け方の東天に見られます 4月前半が見頃2 最接近時は、SOHO画像で見られます3 太陽接近後は、南半球で、日没後の西天に見られます 5月前半が見頃 太陽接近までは、明け方の東天に見られます 4月前半が見頃 最接近時は、SOHO画像で見られます 彗星が、地球と太陽の間にきて、最接近します。     太陽接近後は、南半球で、日没後の西天に見られます 5月前半が見頃 シドニー付近での見え方。

2026/1/27

2026年1月20日 大寒

目次1 北海道 オホーツク海側に流氷接岸!!2 北極付近に1063hPaの高気圧3 1月24日~25日 札幌豪雪3.1 石狩湾小低気圧が発生し停滞4 大規模な寒波5 優勢な高気圧6 寒気の吹き出しによる 筋状の雲7 オホーツク海の流氷が接近 北海道 オホーツク海側に流氷接岸!!   北極付近に1063hPaの高気圧 1月24日~25日 札幌豪雪 午後8時までの札幌市中央区の24時間降雪量は54センチの「ドカ雪」となり、1月の最多を更新。同日の最深積雪は112センチで2022年3月以来、1メートル ...

2026/1/28

アルテミス計画 アルテミス2号がいよいよ有人月周回へ

目次1 アルテミス2号2 アルテミス3号3 月を周回した無人宇宙船が地球に帰還 2022年12月12日 02:454 地球への帰還は12月11日の予定 米東海岸のサンディエゴ近くの太平洋に着水5 月を周回中6 月宇宙船、最遠記録41万キロ先、無人飛行試験中7 宇宙船「オリオン」 日本時間の21日午後10時頃、月からおよそ130キロの地点に最接近8 ダミー人形の「Moonikin Campos」船長9 打ち上げ3日目 月へ飛行中10 打ち上げ9時間後  アルテミス I オリオン カプセルから見た地球の様子1 ...

2026/1/27

2026年の月面X 2月24日

目次1 2026年の月面X2 2026年1月26日 19:00頃 (月面Xから4時間後)3 2026年1月25日 19:00頃 スイスで撮影された X4 2025年12月27日 アメリカで見られたX5 11月27日 20:256 9月29日(月) 18:20~7 8月1日(金) 20:20~8 2025年6月3日(火) 22:50~9 2025年4月5日 22:20~10 2025年3月7日 アメリカで見られたX11 2025年2月5日 19:00    条件良    SONY  RX10Ⅳで撮影12 2 ...

2026/1/26

上野動物園のパンダ レイレイ 大ピンチ!!

目次1 2022年5月3日 憲法記念日1.1 天候は最高  快晴 &    湿度35%2 好天の日に屋外と屋内のどちらで過ごすかはパンダの意志次第2.1 今日の シャンシャン 平成29年(2017年)6月12日に誕生 もうすぐ5歳2.1.1 返還期限2.2 リーリー  飼育員さん、飼育室を汚してしまいました ごめんなさい2.3 シンシン  私は竹を選んで食べるの2.4 レイレイ  あ~怖かった 今日は私が主役!2.5 シャオシャオ  すやすや お眠 2022年5月3日 憲法記念日 天候は最高  快 ...

2026/1/25

上野動物園のパンダ 2026年1月27日に中国に返還

目次1 返還までの観覧方法1.1 1. 観覧日:2025年12月16日(火)~12月21日(日)1.2 2. 観覧日:2025年12月23日(火)~12月26日(金)1.3 3. 観覧日:2025年12月27日(土)~2026年1月12日(月)1.4 4. 観覧日:2026年1月14日(水)~1月25日(日)※1月25日は最終観覧日1.4.1 抽選日程1.4.2 抽選申込枠と当選人数1.4.3 当日のご案内2 2025年11月15日2.1 シャオシャオ2.2 レイレイ3 日中首脳会談経ても変化なし いよい ...

2026/1/25

北海道大開学150周年

北海道大学は2026年、前身の札幌農学校の開学から150周年 ウィリアム・スミス・クラークが初代教頭を務め、東京ドーム約40個分の学びやで、これまで約25万人が巣立っていきました。9月には、クラークが来道前に学長を務めていた米国マサチューセッツ農科大の関係者らを招いた記念式典が札幌市内で開かれます。 札幌農学校は北海道開拓の担い手育成を目的に、現在の札幌市時計台近くに校舎が造られました。農学や工学など授業は全て英語という、斬新な教育スタイルでした。 明治以前の勉学は座学が基本でしたが、クラークは実践の場を ...

2026/1/24

Seestar S50 ☆彡 東京23区内で撮影した天体 ☆彡 ビクセン「Seestar S50」販売終了

目次1 2026年1月24日未明 東京23区内で撮影2 1月21日 ビクセン「Seestar S50」販売終了3 2026年1月13日 東京23区内で撮影4 2026年1月9日 ボートルスケール"5"の空(安曇野市)で撮影5 2025年11月3日 夕暮れ後 17:50~18:105.1 C/2025 A6  レモン彗星  Seestar S50 での撮影6 11月3日 未明 テスト撮影6.1 M426.2 M416.3 バラ星雲6.4 馬頭星雲6.5 M466.6 M47 2026年1月24日未明 東京2 ...

2026/1/28

2026年1月19日~20日~21日夜 低緯度オーロラ出現 Xクラスと呼ばれる、最も規模の大きいフレアが観測

目次1 星空とオーロラ2 大規模「太陽フレア」 星空とオーロラ 大規模「太陽フレア」 https://hrykosd.com/wp-content/uploads/2026/01/20260121_061233.mp4

2026/1/20

『劇場版「鬼滅の刃」無限城編』「第一章 猗窩座再来」 入場者特典 第13弾!! 興収390.8億円

目次1 2025年12月21日 『鬼滅の刃』興収ペース落ちる !!     前作を下回る2 アニメ映画賞にノミネート 第83回ゴールデン・グローブ賞 →受賞ならず2.0.1 「劇場版『鬼滅の刃』無限城編 第一章 猗窩座再来」の世界興行収入  日本映画として初めて1000億円を突破2.0.2 日本映画世界歴代興行収入2.0.3 入場者特典2.1 1月24日~2.2 1月10日~2.3 12月20日~2.4 11月29日~2.5 11月15日~2.6 11月1日~2.7 10月18日~2.8 10月4日~2. ...

2026/1/20

東京の冬の寒さ 今昔

目次1 2024-2025冬 ⇒ 1月5日の -0.2度のみ2 冬日ゼロか ⇒ 2024年1月25日 やっと、-1.1度3 昔の東京は現在とは比較にならない寒さ4 昔は東京でも真冬日(最高気温が氷点下)が現れた4.1 1967年2月10日~12日    東京で58時間氷点下4.1.1 東京での積雪記録 2024-2025冬 ⇒ 1月5日の -0.2度のみ 冬日ゼロか ⇒ 2024年1月25日 やっと、-1.1度 2003-2004年、2006-2007年、2008年-2009年の冬(主に12月-3月)は、 ...

2026/1/20

日本の寒極 幌加内町母子里 1978年2月17日 -41.2度

目次1 日本の寒極はどこか1.1 公式記録では1.2 気象庁からの委託測定の記録では2 近年の母子里3 母子里に一番近いアメダス地点は朱鞠内3.1 真冬日の連続記録(真冬日とは1日の最高気温が0度未満の日) 日本の寒極はどこか 公式記録では 日本の最低気温といえば、1902年1月25日に旭川で記録した-41.0度となっていますが、これは気象庁が測定した公式記録です。明治期の旭川では、朝スズメが凍って落ちていることもあったそうです。だだ、旭川も都市化の影響で、1954年1月24日に-30.0度を観測して以降 ...

2026/1/19

ミラノコルティナ五輪 2026年2月6日開会式

目次1 会場2 日程3 新競技 スキーマウンテニアリング SKI MOUNTAINEERING3.1 スキーマウンテニアリングの種目4 NHK放送予定 会場 日程 新競技 スキーマウンテニアリング SKI MOUNTAINEERING スキーマウンテニアリング(Ski Mountaineering)は略してSKIMO(スキーモ)とも呼ばれ、上り坂や下り坂を滑ることに加えて、登山技術を駆使して雪山を駆け抜ける競技です。新たにミラノ・コルティナ2026冬季オリンピックで追加されます。 スキーマウンテニアリング ...

2026/1/18

C/2024 E1 (Wierzchos) 2026/2/17 地球最接近

目次1 近日点通過 2026年1月20日2 近日点接近後 西空2.1 北半球 2026年2月中旬以降2.2 南半球 2026年1月以降 近日点通過 2026年1月20日 近日点接近後 西空 北半球 2026年2月中旬以降 南半球 2026年1月以降

ムーンショット型研究開発制度

生活関連

ムーンショット型研究開発制度

目次

概要

背景

  • 我が国は、少子高齢化の進展や大規模自然災害への備え、地球温暖化問題への対処等、多くの困難な課題を抱える中、それら課題解決に科学技術が果敢に挑戦し、未来社会の展望を切り拓いていくことが求められています。
  • 欧米や中国では、破壊的イノベーションの創出を目指し、これまでの延長では想像もつかないような野心的な構想や困難な社会課題の解決を掲げ、我が国とは桁違いの投資規模でハイリスク・ハイインパクトな挑戦的研究開発を強力に推進しています。
  • そうした中、我が国発の破壊的イノベーションを創出し、従来技術の延長にない、より大胆な発想に基づく挑戦的な研究開発が必要となっています。

制度の特徴

  • 未来社会を展望し、困難だが実現すれば大きなインパクトが期待される社会課題等を対象として、人々を魅了する野心的な目標(ムーンショット目標)及び構想を国が策定します。
  • 各ムーンショット目標において、複数のプロジェクトを統括するPD(プログラムディレクター)を任命し、その下に国内外トップの研究者をPM(プロジェクトマネージャー)として採択します。
  • 研究全体を俯瞰したポートフォリオを構築し、我が国の基礎研究力を最大限に引き出す挑戦的研究開発を積極的に推進し、失敗も許容しながら挑戦的な研究開発を推進します。
  • ステージゲートを設けてポートフォリオを柔軟に見直し、将来における社会実装を見据え派生的な研究成果のスピンアウトを奨励します。
  • データ基盤を用いた最先端の研究支援システムを構築します。

[参考]ムーンショットの由来

  • 1961年、アメリカ合衆国のジョン・F・ケネディ大統領が、「1960年代が終わる前に月面に人類を着陸させ、無事に地球に帰還させる」という実現困難な月面着陸プロジェクト (アポロ計画)を発表し、1969年にその目標通り達成している。
  • それに倣い、実現困難だが実現すれば大きなインパクトが期待される社会課題を対象にした野心的な目標を掲げた研究開発制度であるため、「ムーンショット型」と名付けている。
  • 2016年には、Apple社(当時はApple Computer社)の元CEOであるジョン・スカリー氏が著作「ムーンショット」の中で「将来を描く、斬新で困難だが、実現によって大きなインパクトがもたらされる、壮大な目標・挑戦」として紹介しており、現在はビジネス用語としても使用されている。

ムーンショット目標

  • 全ての目標は「人々の幸福(Human Well-being)」の実現を目指し、掲げられています。
  • 将来の社会課題を解決するために、人々の幸福で豊かな暮らしの基盤となる以下の3つの領域から、具体的な9つの目標を決定しています。[総合科学技術・イノベーション会議決定(目標1~6:令和2年1月23日、目標8,9:令和3年9月28日)、健康・医療戦略推進本部決定(目標7:令和2年7月14日)]
  1. 社会:急進的イノベーションで少子高齢化時代を切り拓く。[課題:少子高齢化、労働人口減少 等]
  2. 環境:地球環境を回復させながら都市文明を発展させる。[課題:地球温暖化、海洋プラスチック、資源の枯渇、環境保全と食料生産の両立 等]
  3. 経済:サイエンスとテクノロジーでフロンティアを開拓する。[課題:Society5.0実現のための計算需要増大、人類の活動領域拡大 等]

ムーンショット目標1 2050年までに、人が身体、脳、空間、時間の制約から解放された社会を実現

ターゲット

誰もが多様な社会活動に参画できるサイバネティック・アバター 基盤

  • 2050年までに、複数の人が遠隔操作する多数のアバターとロボットを組み合わせることによって、大規模で複雑なタスクを実行するための技術を開発し、その運用等に必要な基盤を構築する。
  • 2030年までに、1つのタスクに対して、1人で10体以上のアバターを、アバター1体の場合と同等の速度、精度で操作できる技術を開発し、その運用等に必要な基盤を構築する。

注:サイバネティック・アバターは、身代わりとしてのロボットや3D映像等を示すアバターに加えて、人の身体的能力、認知能力及び知覚能力を拡張するICT技術やロボット技術を含む概念。Society 5.0時代のサイバー・フィジカル空間で自由自在に活躍するものを目指している。

サイバネティック・アバター生活

  • 2050年までに、望む人は誰でも身体的能力、認知能力及び知覚能力をトップレベルまで拡張できる技術を開発し、社会通念を踏まえた新しい生活様式を普及させる。
  • 2030年までに、望む人は誰でも特定のタスクに対して、身体的能力、認知能力及び知覚能力を強化できる技術を開発し、社会通念を踏まえた新しい生活様式を提案する。

ムーンショット目標2 2050年までに、超早期に疾患の予測・予防をすることができる社会を実現

ターゲット

  • 2050年までに、臓器間の包括的ネットワークの統合的解析を通じて疾患予測・未病評価システムを確立し、疾患の発症自体の抑制・予防を目指す。
  • 2050年までに、人の生涯にわたる個体機能の変化を臓器間の包括的ネットワークという観点で捉え、疾患として発症する前の「まだ後戻りできる状態」、すなわち「未病の状態」から健康な状態に引き戻すための方法を確立する。
  • 2050年までに、疾患を引き起こすネットワーク構造を同定し、新たな予測・予防等の方法を確立する。
  • 2030年までに、人の臓器間ネットワークを包括的に解明する。

関連するエリアとビジョン

Area :「急進的イノベーションで少子高齢化時代を切り拓く」、「サイエンスとテクノロジーでフロンティアを開拓する」

Vision :「「100歳まで健康不安なく、人生を楽しめる社会」の実現」、「基本的生命過程の制御技術 (バイオ)」、「脳神経メカニズムの全解明 (脳・神経系)」

目標設定の背景

  • 高齢化等に起因する慢性疾患等(糖尿病、高血圧、動脈硬化、アレルギー、認知症、神経障害等)に係る社会問題は大きな課題となっており、慢性疾患等の予防が急務となっている。
  • 慢性疾患等の発症メカニズムの解明はまだ不十分であり、根本的な予測・予防方法はまだ確立されていない。
  • 各臓器が担う生体機能を相互依存的なネットワークとして捉え、その破綻によって病態が形成されるという考え方に基づき、破綻を防ぎ、健康な状態を維持するという考えが重要であると認識されつつある。
  • 例えば、パーキンソン病については腸内の異常タンパク質が、がんについては睡眠等の生活リズムが関係している可能性がある等、意外な臓器間のつながりにより疾患が発症することが示唆されている。
  • 臓器間ネットワークに関連する知見を蓄積し利活用することにより、慢性疾患等の予測方法を確立でき、さらに将来的には新たな治療・緩和方法の開発につながる可能性がある。
  • 臓器間ネットワークの包括的な解明に向けた取組は、Human Cell Atlas(米)、Brain Initiative(米)、Human Brain Project(欧)等の欧米の大型プロジェクトでも実施されていない先駆的な試みである。

ムーンショットが目指す社会

  • 従来のアプローチで治療方法が見いだせていない疾患に対し、新しい発想の予測・予防方法を創出し、慢性疾患等を予防できる社会を実現する。
  • 疾患を引き起こすネットワーク構造を解明することで、加齢による疾患の発症メカニズム等を明らかにし、関連する社会問題を解決する。
  • 疾患の発症メカニズムの解明により、医薬品、医療機器等の、様々な医療技術を発展させ、我が国の健康・医療産業の競争力を強化する。

ムーンショット目標3 2050年までに、AIとロボットの共進化により、自ら学習・行動し人と共生するロボットを実現

ターゲット

  • 2050年までに、人が違和感を持たない、人と同等以上な身体能力をもち、人生に寄り添って一緒に成長するAIロボットを開発する。
  • 2030年までに、一定のルールの下で一緒に行動して90%以上の人が違和感を持たないAIロボットを開発する。
  • 2050年までに、自然科学の領域において、自ら思考・行動し、自動的に科学的原理・解法の発見を目指すAIロボットシステムを開発する。
  • 2030年までに、特定の問題に対して自動的に科学的原理・解法の発見を目指すAIロボットを開発する。
  • 2050年までに、人が活動することが難しい環境で、自律的に判断し、自ら活動し成長するAIロボットを開発する。
  • 2030年までに、特定の状況において人の監督の下で自律的に動作するAIロボットを開発する。

関連するエリアとビジョン

Area :「急進的イノベーションで少子高齢化時代を切り拓く」、「サイエンスとテクノロジーでフロンティアを開拓する」

Vision :「完全無人化による産業革新」、「サイエンスの自動化(AI)」、「宇宙への定常的進出(宇宙)」

目標設定の背景

  • 少子高齢化の進展により、今後、我が国では生産年齢人口が減少するが、これは同様の人口動態をたどる先進国やアジア周辺国においても共通の課題であり、日本は課題先進国としてこの課題の解決に取り組むべき。
  • また、人類の活動領域を現在よりも飛躍的に拡大するためには、人に代わって自律的に活動するロボットが必要になる。
  • こうした観点から、人のように自律的に判断し行動することができ、さらには、自律的に動くのみならず、学習も人のように自律的に行い、かつ学習を自ら発展させることができるAIロボットの開発が必須である。
  • そのためには、ディープラーニングが持つ限界(未知事象への対応が困難、機械学習に要する膨大なコスト・労力等)を打破し、自ら学習し成長するAIの開発、ロボットの消費電力の飛躍的な低減化、及びAIロボットの最適なアーキテクチャの検討が急務である。

ムーンショットが目指す社会

  • ゆりかごから墓場まで、人の感性、倫理観を共有し、人と一緒に成長するパートナーAIロボットを開発し、豊かな暮らしを実現する。
  • 実験結果のビックデータから新たな仮説を生成し、仮説の検証、実験を自動的に行い、新たな発見を行うAIロボットを開発することによって、これらにより開発された医薬品や、技術等による、豊かな暮らしを実現する。
  • 月面、小惑星等に存在する地球外資源の自律的な探索、採掘を実現する。
  • 農林水産業、土木工事等における効率化、労働力の確保、労働災害ゼロを実現する。
  • 災害時の人命救助から復旧までを自律的に行うAIロボットシステムを構築し、人が快適に暮らせる環境をいつでも迅速に取り戻すことができる社会を実現する。
  • AIロボット技術と人の能力拡張技術の調和の取れた活用により、AIロボットが得た情報等を人にフィードバックし、新しい知識の獲得や追体験等を通じた様々なサービスが創出される。

ムーンショット目標4 2050年までに、地球環境再生に向けた持続可能な資源循環を実現

ターゲット

地球環境再生のために、持続可能な資源循環の実現による、地球温暖化問題の解決(Cool Earth)と環境汚染問題の解決(Clean Earth)を目指す。

Cool Earth & Clean Earth

  • 2050年までに、資源循環技術の商業規模のプラントや製品を世界的に普及させる。

Cool Earth

  • 2030年までに、温室効果ガスに対する循環技術を開発し、ライフサイクルアセスメント(LCA)の観点からも有効であることをパイロット規模で確認する。

Clean Earth

  • 2030年までに、環境汚染物質を有益な資源に変換もしくは無害化する技術を開発し、パイロット規模または試作品レベルで有効であることを確認する。

関連するエリアとビジョン

Area :「地球環境を回復させながら都市文明を発展させる」

Vision :「資源の完全循環」、「資源要求の劇的削減」

目標設定の背景

  • 温室効果ガス削減が急務だが、パリ協定で掲げられた2℃目標と各国の約束草案に基づく見通しには、2030年で130億t-CO2ものギャップがあるとの予測がある。従来の排出源対策に加え、ネガティブエミッション技術等の新たな温室効果ガス対策が不可欠となる。
  • プラネタリーバウンダリー(人間社会が発展と繁栄を続けられるための地球の限界値。これを超えると人間が依存する自然資源に対して回復不可能な変化が引き起こされる。)において、窒素等が限界値を超えたハイリスクな状態にあるとの報告がある。
  • 海洋プラスチックごみ問題については、海の生態系に影響を与えており、食物連鎖を通じた人類への影響も懸念される。
  • これらのような、環境中に排出され悪影響を及ぼしている物質については、排出削減の努力に加えて、排出される物質を循環させる方策が必要となる。

ムーンショットが目指す社会

  • 温室効果ガスや環境汚染物質を削減する新たな資源循環の実現により、人間の生産や消費活動を継続しつつ、現在進行している地球温暖化問題と環境汚染問題を解決し、地球環境を再生する。

ムーンショット目標5 2050年までに、未利用の生物機能等のフル活用により、地球規模でムリ・ムダのない持続的な食料供給産業を創出

ターゲット

  • 2050年までに、微生物や昆虫等の生物機能をフル活用し、完全資源循環型の食料生産システムを開発する。
  • 2050年までに、食料のムダを無くし、健康・環境に配慮した合理的な食料消費を促す解決法を開発する。
  • 2030年までに、上記システムのプロトタイプを開発・実証するとともに、倫理的・法的・社会的(ELSI)な議論を並行的に進めることにより、2050年までにグローバルに普及させる。

ムーンショット目標6 2050年までに、経済・産業・安全保障を飛躍的に発展させる誤り耐性型汎用量子コンピュータを実現

ターゲット

  • 2050年頃までに、大規模化を達成し、誤り耐性型汎用量子コンピュータを実現する。
  • 2030年までに、一定規模のNISQ量子コンピュータを開発するとともに実効的な量子誤り訂正を実証する。

誤り耐性型汎用量子コンピュータは、大規模な集積化を実現しつつ、様々な用途に応用する上で十分な精度を保証できる量子コンピュータ。

NISQ(Noisy Intermediate-Scale Quantum)量子コンピュータは、小中規模で誤りを訂正する機能を持たない量子コンピュータ。

ムーンショット目標7 2040年までに、主要な疾患を予防・克服し100歳まで健康不安なく人生を楽しむためのサステイナブルな医療・介護システムを実現

ターゲット

【日常生活の中で自然と予防ができる社会の実現】

  • 2040年までに、免疫システムや睡眠の制御等により健康を維持し疾患の発症・重症化を予防するための技術や、日常生活の場面で個人の心身の状態を可視化・予測し、各人に最適な健康維持の行動を自発的に促す技術を開発することで、心身共に健康を維持できる社会基盤を構築する。
  • 2030年までに、全ての生体トレンドを低負荷で把握・管理できる技術を開発する。

【世界中のどこにいても必要な医療にアクセスできるメディカルネットワークの実現】

  • 2040年までに、簡便な検査や治療を家庭等で行うための診断・治療機器や、一部の慢性疾患の診断・治療フリー技術等を開発することで、地域に関わらず、また災害時や緊急時でも平時と同等の医療が提供されるメディカルネットワークを構築する。また、データサイエンスや評価系の構築等により医薬品・医療機器等の開発期間を大幅に短縮し、がんや認知症といった疾患の抜本的な治療法や早期介入手法を開発する。
  • 2030年までに、小型・迅速・高感度な診断・治療機器や、医師の医学的所見・診断能力をさらに引き上げる技術等を開発し、個人の状況にあった質の高い医療・介護を少ない担い手でも適切に提供できる技術基盤を構築する。

【負荷を感じずにQoLの劇的な改善を実現(健康格差をなくすインクルージョン社会の実現)】

  • 2040年までに、負荷を感じないリハビリ等で身体機能を回復させる技術、不調となった生体制御システムを正常化する技術、機能が衰えた臓器を再生・代替する技術等を開発することで、介護に依存せず在宅で自立的な生活を可能とする社会基盤を構築する。
  • 2030年までに、負荷を低減したリハビリ等で身体機能の改善や在宅での自立的生活をサポートする技術、不調となった生体制御システムを改善する技術を開発する。

※目標達成のためには、基礎研究と実用化研究の融合、医学研究と他分野の研究との融合といった分野融合的な研究や最新の知見の採り込みといった研究アプローチが重要。

ムーンショット目標8 2050年までに、激甚化しつつある台風や豪雨を制御し極端風水害の脅威から解放された安全安心な社会を実現

ターゲット

  • 2050年までに、激甚化しつつある台風や豪雨(線状降水帯によるものを含む)の強度・タイミング・発生範囲などを変化させる制御によって極端風水害による被害を大幅に軽減し、我が国及び国際社会に幅広く便益を得る。
  • 2030年までに、現実的な操作を前提とした台風や豪雨(線状降水帯によるものを含む)の制御によって被害を軽減することが可能なことを計算機上で実証するとともに、広く社会との対話・協調を図りつつ、操作に関わる屋外実験を開始する。

ムーンショット目標9 2050年までに、こころの安らぎや活力を増大することで、精神的に豊かで躍動的な社会を実現

ターゲット

  • 2050年までに、こころの安らぎや活力を増大し、こころ豊かな状態を叶える技術を確立する。
  • 2030年までに、こころと深く結びつく要素(文化・伝統・芸術等を含む。)の抽出や測定、こころの変化の機序解明等を通して、こころの安らぎや活力を増大する要素技術を創出する。加えて、それらの技術の社会実装への問題点を幅広く検討し、社会に広く受容される解決策の方向性を明らかにする。
  • 2050年までに、多様性を重視しつつ、共感性・創造性を格段に高める技術を創出し、これに基づいたこころのサポートサービスを世界に広く普及させる。
  • 2030年までに、人文社会科学と技術の連携等により、コミュニケーションにおいて多様性の受容や感動・感情の共有を可能にする要素技術を社会との対話を広く行いながら創出する。

 

-生活関連
-

Copyright© おさのフォト日記 , 2026 All Rights Reserved Powered by AFFINGER5.

PAGE TOP